fastNLP.core.optimizer 源代码

r"""
optimizer 模块定义了 fastNLP 中所需的各种优化器,一般做为 :class:`~fastNLP.Trainer` 的参数使用。

"""
__all__ = [
    "Optimizer",
    "SGD",
    "Adam",
    "AdamW"
]

import math

import torch
from torch.optim.optimizer import Optimizer as TorchOptimizer


[文档]class Optimizer(object): r""" Optimizer """
[文档] def __init__(self, model_params, **kwargs): r""" :param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models. :param kwargs: additional parameters. """ if model_params is not None and not hasattr(model_params, "__next__"): raise RuntimeError("model parameters should be a generator, rather than {}.".format(type(model_params))) self.model_params = model_params self.settings = kwargs
def construct_from_pytorch(self, model_params): raise NotImplementedError @staticmethod def _get_require_grads_param(params): r""" 将params中不需要gradient的删除 :param iterable params: parameters :return: list(nn.Parameters) """ return [param for param in params if param.requires_grad]
class NullOptimizer(Optimizer): r""" 当不希望Trainer更新optimizer时,传入本optimizer,但请确保通过callback的方式对参数进行了更新。 """ def __init__(self): super().__init__(None) def construct_from_pytorch(self, model_params): return self def __getattr__(self, item): def pass_func(*args, **kwargs): pass return pass_func
[文档]class SGD(Optimizer): r""" SGD """
[文档] def __init__(self, lr=0.001, momentum=0, model_params=None): r""" :param float lr: learning rate. Default: 0.01 :param float momentum: momentum. Default: 0 :param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models. """ if not isinstance(lr, float): raise TypeError("learning rate has to be float.") super(SGD, self).__init__(model_params, lr=lr, momentum=momentum)
def construct_from_pytorch(self, model_params): if self.model_params is None: # careful! generator cannot be assigned. return torch.optim.SGD(self._get_require_grads_param(model_params), **self.settings) else: return torch.optim.SGD(self._get_require_grads_param(self.model_params), **self.settings)
[文档]class Adam(Optimizer): r""" Adam """
[文档] def __init__(self, lr=0.001, weight_decay=0, betas=(0.9, 0.999), eps=1e-8, amsgrad=False, model_params=None): r""" :param float lr: learning rate :param float weight_decay: :param eps: :param amsgrad: :param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models. """ if not isinstance(lr, float): raise TypeError("learning rate has to be float.") super(Adam, self).__init__(model_params, lr=lr, betas=betas, eps=eps, amsgrad=amsgrad, weight_decay=weight_decay)
def construct_from_pytorch(self, model_params): if self.model_params is None: # careful! generator cannot be assigned. return torch.optim.Adam(self._get_require_grads_param(model_params), **self.settings) else: return torch.optim.Adam(self._get_require_grads_param(self.model_params), **self.settings)
[文档]class AdamW(TorchOptimizer): r""" 对AdamW的实现,该实现在pytorch 1.2.0版本中已经出现,https://github.com/pytorch/pytorch/pull/21250。 这里加入以适配低版本的pytorch .. todo:: 翻译成中文 The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """
[文档] def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False): r""" :param params (iterable): iterable of parameters to optimize or dicts defining parameter groups :param lr (float, optional): learning rate (default: 1e-3) :param betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.99)) :param eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) :param weight_decay (float, optional): weight decay coefficient (default: 1e-2) algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) """ if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(AdamW, self).__init__(params, defaults)
def __setstate__(self, state): super(AdamW, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False)
[文档] def step(self, closure=None): r"""Performs a single optimization step. :param closure: (callable, optional) A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue # Perform stepweight decay p.data.mul_(1 - group['lr'] * group['weight_decay']) # Perform optimization step grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 p.data.addcdiv_(-step_size, exp_avg, denom) return loss