fastNLP.modules.encoder.attention 源代码

r"""undocumented"""

__all__ = [
    "MultiHeadAttention",
    "BiAttention",
    "SelfAttention",
]

import math

import torch
import torch.nn.functional as F
from torch import nn

from fastNLP.modules.utils import initial_parameter


class DotAttention(nn.Module):
    r"""
    Transformer当中的DotAttention
    """

    def __init__(self, key_size, value_size, dropout=0.0):
        super(DotAttention, self).__init__()
        self.key_size = key_size
        self.value_size = value_size
        self.scale = math.sqrt(key_size)
        self.drop = nn.Dropout(dropout)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, Q, K, V, mask_out=None):
        r"""

        :param Q: [..., seq_len_q, key_size]
        :param K: [..., seq_len_k, key_size]
        :param V: [..., seq_len_k, value_size]
        :param mask_out: [..., 1, seq_len] or [..., seq_len_q, seq_len_k]
        """
        output = torch.matmul(Q, K.transpose(-1, -2)) / self.scale
        if mask_out is not None:
            output.masked_fill_(mask_out, -1e9)
        output = self.softmax(output)
        output = self.drop(output)
        return torch.matmul(output, V)


[文档]class MultiHeadAttention(nn.Module): r""" Transformer当中的MultiHeadAttention """
[文档] def __init__(self, input_size, key_size, value_size, num_head, dropout=0.1): r""" :param input_size: int, 输入维度的大小。同时也是输出维度的大小。 :param key_size: int, 每个head的维度大小。 :param value_size: int,每个head中value的维度。 :param num_head: int,head的数量。 :param dropout: float。 """ super(MultiHeadAttention, self).__init__() self.input_size = input_size self.key_size = key_size self.value_size = value_size self.num_head = num_head in_size = key_size * num_head self.q_in = nn.Linear(input_size, in_size) self.k_in = nn.Linear(input_size, in_size) self.v_in = nn.Linear(input_size, in_size) self.attention = DotAttention(key_size=key_size, value_size=value_size, dropout=dropout) self.out = nn.Linear(value_size * num_head, input_size) self.reset_parameters()
def reset_parameters(self): sqrt = math.sqrt nn.init.normal_(self.q_in.weight, mean=0, std=sqrt(1.0 / self.input_size)) nn.init.normal_(self.k_in.weight, mean=0, std=sqrt(1.0 / self.input_size)) nn.init.normal_(self.v_in.weight, mean=0, std=sqrt(1.0 / self.input_size)) nn.init.normal_(self.out.weight, mean=0, std=sqrt(1.0 / self.input_size))
[文档] def forward(self, Q, K, V, atte_mask_out=None): r""" :param Q: [batch, seq_len_q, model_size] :param K: [batch, seq_len_k, model_size] :param V: [batch, seq_len_k, model_size] :param seq_mask: [batch, seq_len] """ batch, sq, _ = Q.size() sk = K.size(1) d_k, d_v, n_head = self.key_size, self.value_size, self.num_head # input linear q = self.q_in(Q).view(batch, sq, n_head, d_k).transpose(1, 2) k = self.k_in(K).view(batch, sk, n_head, d_k).transpose(1, 2) v = self.v_in(V).view(batch, sk, n_head, d_v).transpose(1, 2) if atte_mask_out is not None: atte_mask_out = atte_mask_out[:,None,:,:] # [bsz,1,1,len] atte = self.attention(q, k, v, atte_mask_out).view(batch, n_head, sq, d_v) # concat all heads, do output linear atte = atte.transpose(1, 2).contiguous().view(batch, sq, -1) output = self.out(atte) return output
def _masked_softmax(tensor, mask): tensor_shape = tensor.size() reshaped_tensor = tensor.view(-1, tensor_shape[-1]) # Reshape the mask so it matches the size of the input tensor. while mask.dim() < tensor.dim(): mask = mask.unsqueeze(1) mask = mask.expand_as(tensor).contiguous().float() reshaped_mask = mask.view(-1, mask.size()[-1]) result = F.softmax(reshaped_tensor * reshaped_mask, dim=-1) result = result * reshaped_mask # 1e-13 is added to avoid divisions by zero. result = result / (result.sum(dim=-1, keepdim=True) + 1e-13) return result.view(*tensor_shape) def _weighted_sum(tensor, weights, mask): w_sum = weights.bmm(tensor) while mask.dim() < w_sum.dim(): mask = mask.unsqueeze(1) mask = mask.transpose(-1, -2) mask = mask.expand_as(w_sum).contiguous().float() return w_sum * mask
[文档]class BiAttention(nn.Module): r""" Bi Attention module 对于给定的两个向量序列 :math:`a_i` 和 :math:`b_j` , BiAttention模块将通过以下的公式来计算attention结果 .. math:: \begin{array}{ll} \\ e_{ij} = {a}^{\mathrm{T}}_{i}{b}_{j} \\ {\hat{a}}_{i} = \sum_{j=1}^{\mathcal{l}_{b}}{\frac{\mathrm{exp}(e_{ij})}{\sum_{k=1}^{\mathcal{l}_{b}}{\mathrm{exp}(e_{ik})}}}{b}_{j} \\ {\hat{b}}_{j} = \sum_{i=1}^{\mathcal{l}_{a}}{\frac{\mathrm{exp}(e_{ij})}{\sum_{k=1}^{\mathcal{l}_{a}}{\mathrm{exp}(e_{ik})}}}{a}_{i} \\ \end{array} """
[文档] def forward(self, premise_batch, premise_mask, hypothesis_batch, hypothesis_mask): r""" :param torch.Tensor premise_batch: [batch_size, a_seq_len, hidden_size] :param torch.Tensor premise_mask: [batch_size, a_seq_len] :param torch.Tensor hypothesis_batch: [batch_size, b_seq_len, hidden_size] :param torch.Tensor hypothesis_mask: [batch_size, b_seq_len] :return: torch.Tensor attended_premises: [batch_size, a_seq_len, hidden_size] torch.Tensor attended_hypotheses: [batch_size, b_seq_len, hidden_size] """ similarity_matrix = premise_batch.bmm(hypothesis_batch.transpose(2, 1) .contiguous()) prem_hyp_attn = _masked_softmax(similarity_matrix, hypothesis_mask) hyp_prem_attn = _masked_softmax(similarity_matrix.transpose(1, 2) .contiguous(), premise_mask) attended_premises = _weighted_sum(hypothesis_batch, prem_hyp_attn, premise_mask) attended_hypotheses = _weighted_sum(premise_batch, hyp_prem_attn, hypothesis_mask) return attended_premises, attended_hypotheses
[文档]class SelfAttention(nn.Module): r""" 这是一个基于论文 `A structured self-attentive sentence embedding <https://arxiv.org/pdf/1703.03130.pdf>`_ 的Self Attention Module. """
[文档] def __init__(self, input_size, attention_unit=300, attention_hops=10, drop=0.5, initial_method=None, ): r""" :param int input_size: 输入tensor的hidden维度 :param int attention_unit: 输出tensor的hidden维度 :param int attention_hops: :param float drop: dropout概率,默认值为0.5 :param str initial_method: 初始化参数方法 """ super(SelfAttention, self).__init__() self.attention_hops = attention_hops self.ws1 = nn.Linear(input_size, attention_unit, bias=False) self.ws2 = nn.Linear(attention_unit, attention_hops, bias=False) self.I = torch.eye(attention_hops, requires_grad=False) self.I_origin = self.I self.drop = nn.Dropout(drop) self.tanh = nn.Tanh() initial_parameter(self, initial_method)
def _penalization(self, attention): r""" compute the penalization term for attention module """ baz = attention.size(0) size = self.I.size() if len(size) != 3 or size[0] != baz: self.I = self.I_origin.expand(baz, -1, -1) self.I = self.I.to(device=attention.device) attention_t = torch.transpose(attention, 1, 2).contiguous() mat = torch.bmm(attention, attention_t) - self.I[:attention.size(0)] ret = (torch.sum(torch.sum((mat ** 2), 2), 1).squeeze() + 1e-10) ** 0.5 return torch.sum(ret) / size[0]
[文档] def forward(self, input, input_origin): r""" :param torch.Tensor input: [batch_size, seq_len, hidden_size] 要做attention的矩阵 :param torch.Tensor input_origin: [batch_size, seq_len] 原始token的index组成的矩阵,含有pad部分内容 :return torch.Tensor output1: [batch_size, multi-head, hidden_size] 经过attention操作后输入矩阵的结果 :return torch.Tensor output2: [1] attention惩罚项,是一个标量 """ input = input.contiguous() size = input.size() # [bsz, len, nhid] input_origin = input_origin.expand(self.attention_hops, -1, -1) # [hops,baz, len] input_origin = input_origin.transpose(0, 1).contiguous() # [baz, hops,len] y1 = self.tanh(self.ws1(self.drop(input))) # [baz,len,dim] -->[bsz,len, attention-unit] attention = self.ws2(y1).transpose(1, 2).contiguous() # [bsz,len, attention-unit]--> [bsz, len, hop]--> [baz,hop,len] attention = attention + (-999999 * (input_origin == 0).float()) # remove the weight on padding token. attention = F.softmax(attention, 2) # [baz ,hop, len] return torch.bmm(attention, input), self._penalization(attention) # output1 --> [baz ,hop ,nhid]